Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Discov ; 10(1): 215, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702323

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease with an unknown etiology. RA cannot be fully cured and requires lengthy treatment, imposing a significant burden on both individuals and society. Due to the lack of specific drugs available for treating RA, exploring a key new therapeutic target for RA is currently an important task. Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the progression of RA, which release interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α resulting in abnormal inflammatory reaction in the synovium. A previous study has highlighted the correlation of m6A reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) with inflammation-related diseases in human. However, the role of IGF2BP2 in the inflammatory reaction of FLSs during RA progression has not been assessed. In this study, IGF2BP2 expression was decreased in the synovial tissues of RA patients and collagen-induced arthritis (CIA) rats. Intra-articular injection of an adeno-associated virus (AAV) vector overexpressing IGF2BP2 relieved paw swelling, synovial hyperplasia and cartilage destruction in CIA rats. IGF2BP2 overexpression also inhibited lipopolysaccharide (LPS)-mediated RA fibroblast-like synoviocytes (RA-FLSs) migration and invasion accompanied by a decreased level of inflammatory factors in vitro. Conversely, IGF2BP2 suppression promoted RA-FLSs migration and invasion with an elevated level of inflammatory factors in vitro. The sequencing result showed that glutathione S-transferase Mu 5 (GSTM5), a key antioxidant gene, was the target mRNA of IGF2BP2. Further experiments demonstrated that IGF2BP2 strengthened the stability of GSTM5 mRNA, leading to weakened inflammatory reaction and reduced expression of matrix metalloproteinase 9 and 13 (MMP9, MMP13). Therefore, IGF2BP2-GSTM5 axis may represent a potential therapeutic target for RA treatment.

2.
Sci Signal ; 17(825): eadh1178, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412254

ABSTRACT

Pyroptosis, an inflammatory form of programmed cell death, is linked to the pathology of rheumatoid arthritis (RA). Here, we investigated the molecular mechanism underlying pyroptosis in T cells isolated from patients with RA. Compared with healthy individuals, patients with RA had more pyroptotic CD4+ T cells in blood and synovia, which correlated with clinical measures of disease activity. Moreover, the mRNA expression and protein abundance of arachidonate 5-lipoxygenase (ALOX5), which converts arachidonic acid to leukotriene A4 (LTA4), were increased in CD4+ T cells from patients with RA and, among patients with RA, were lowest in those in clinical remission. Knockdown or pharmacological inhibition of ALOX5 suppressed CD4+ T cell pyroptosis and improved symptoms in two rodent models of RA. Mechanistically, the increase in ALOX5 activity in RA CD4+ T cells enhanced the production of the LTA4 derivative LTB4, which stimulated Ca2+ influx through ORAI3 channels, leading to the activation of NLRP3 inflammasomes and pyroptosis. Our findings reveal a role for ALOX5 in RA and provide a molecular basis for further exploring the clinical utility of ALOX5 inhibition in RA and for using ALOX5 as a biomarker to distinguish active disease and remission in RA.


Subject(s)
Arthritis, Rheumatoid , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , Pyroptosis , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Inflammation/metabolism , CD4-Positive T-Lymphocytes/metabolism
3.
Arthritis Res Ther ; 26(1): 36, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38273310

ABSTRACT

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease with a complex pathogenesis that has not yet been fully elucidated, and T-cell pyroptosis is an important pathogenetic factor in RA. This study aimed to investigate the role of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the pyroptosis of CD4+ T cells in RA and the specific molecular mechanism. METHODS: Peripheral venous blood was collected from human subjects, and CD4+ T cells were isolated and activated to measure the level of pyroptosis and ERAP2 expression. Pyroptosis levels were assessed using immunofluorescence, flow cytometry, qRT-PCR, and Western blotting. Changes in pyroptosis levels were observed upon knockdown or overexpression of ERAP2. To detect activated Caspase-1 in tissues, chimeric mice were engrafted with human synovial tissue and reconstituted with human CD4+ T cells. CD4 + T cells were treated with GLI1 antagonists and SMO receptor agonists to detect changes in pyroptosis levels. RESULTS: CD4+ T cell levels undergoing pyroptosis were found to be elevated in the blood and synovium of RA patients. The gene and protein expression of ERAP2 were significantly higher in CD4+ T cells from RA patients. Deletion of ERAP2 suppressed pyroptosis of these cells, attenuated the activation of Caspase-1 in tissue T cells, and reduced tissue inflammatory responses. Reciprocally, overexpression of ERAP2 triggered inflammasome assembly, activated Caspase-1, and induced pyroptosis in CD4+ T cells. Mechanistically, ERAP2 inhibits the Hedgehog signaling pathway and upregulates the expression of nucleotide-binding oligomerization segment-like receptor family 3(NLRP3), cleaved Caspase-1, and Gasdermin D to promote pyroptosis in CD4+ T cells. CONCLUSIONS: Taken together, our results identify a novel mechanism by which ERAP2 regulates RA development and document the effect of the ERAP2/Hedgehog signaling axis on pyroptosis of CD4+ T cells from RA patients.


Subject(s)
Arthritis, Rheumatoid , Pyroptosis , Humans , Animals , Mice , Hedgehog Proteins/metabolism , Arthritis, Rheumatoid/metabolism , CD4-Positive T-Lymphocytes , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Caspase 1/metabolism , Aminopeptidases/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology
4.
Arthritis Res Ther ; 25(1): 144, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37559090

ABSTRACT

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease. Over-activation of fibroblast-like synoviocytes is responsible for the hyperplasia of synovium and destruction of cartilage and bone and pyroptosis of FLS plays a key role in those pathological processes during RA. This study investigated the detailed mechanisms that SMAD2 regulates the pyroptosis of FLS and secretion of inflammatory factors in rheumatoid arthritis. METHODS: We collected synovial tissues of RA patients and FLS-RA and cultured FLS for detection of expression of SMAD2. ASC, NLRP3, cleaved-caspase-1, and GSDMD-N were detected by Western blot after overexpression of SMAD2. Besides, flow cytometry, electron microscope, ELISA, HE staining, and Safranin O staining were performed to further demonstrate that SMAD2 can affect the pyroptosis of FLS-RA. RESULTS: The expression of SMAD2 was down-regulated in synovial tissues of RA patients and FLS-RA. Overexpression of SMAD2 can inhibit the expression of ASC, NLRP3, cleaved-caspase-1, and GSDMD-N. Flow cytometry and electron microscope further demonstrated that SMAD2 attenuated pyroptosis of FLS-RA. In addition, overexpression of SMAD2 also inhibited inflammatory factors such as IL-1ß, IL-18, IL-6, and IL-8 secretion and release of LDH. Besides, overexpression of SMAD2 can reverse the decrease of p-SMAD2 and TGF-TGF-ß induced by nigericin. In vivo experiments on CIA rats further demonstrated that overexpression of SMAD2 by local intra-articular injection of LV-SMAD2 can effectively alleviate joint redness, swelling, and destruction of cartilage and bones. CONCLUSION: SMAD2 inhibited FLS-RA pyroptosis by down-regulating of NLRP3 inflammasomes (NLRP3, ASC, and caspase-1 complex) and eased the secretion of inflammatory factors via the TGF-ß signaling pathway, thereby improving the symptom of RA. We hope that this study may provide a new research idea for RA and a potential target for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Smad2 Protein , Synoviocytes , Animals , Rats , Arthritis, Rheumatoid/metabolism , Caspases/metabolism , Cell Proliferation , Cells, Cultured , Fibroblasts/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Synovial Membrane/metabolism , Transforming Growth Factor beta/metabolism , Humans , Smad2 Protein/metabolism
5.
Inflammation ; 46(3): 1022-1035, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36920636

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to synovial inflammation, pannus formation, cartilage damage, bone destruction, and ultimate disability. Fibroblast-like synoviocytes (FLS) are involved in the pathogenetic mechanism of RA. Cdc37 (cell division cycle protein 37) is regarded as a molecular chaperone involved in various physiological processes such as cell cycle progression, cell proliferation, cell signal transduction, tumorigenesis, and progression. However, the precise role of Cdc37 in the pathogenesis of rheumatoid arthritis (RA) remains uncertain. In our study, we found that Cdc37 expression was upregulated in human rheumatoid synovia in contrast with the normal group. Interestingly, Cdc37 activated the ERK pathway to promote RA-FLS proliferation and migration in vitro. Ultimately, in vivo experiments revealed that silencing of Cdc37 alleviated ankle swelling and cartilage destruction and validated the ERK signaling pathways in vitro findings. Collectively, we demonstrate that Cdc37 promotes the proliferation and migration of RA-FLS by activation of ERK signaling pathways and finally aggravates the progression of RA. These data indicated that Cdc37 may be a novel target for the treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Rats , Humans , Animals , Synoviocytes/metabolism , Arthritis, Experimental/metabolism , MAP Kinase Signaling System , Cell Movement , Arthritis, Rheumatoid/metabolism , Cell Proliferation/physiology , Fibroblasts/metabolism , Cells, Cultured , Synovial Membrane/metabolism , Cell Cycle Proteins/metabolism , Chaperonins/metabolism
6.
Int Immunopharmacol ; 115: 109714, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36657337

ABSTRACT

Rheumatoid arthritis (RA) is a systemic immune-mediated inflammatory disease that significantly impacts patients' quality of life. Fibroblast-like synovial cells (FLSs) within the synovial intima exhibit "tumor-like" properties such as increased proliferation, migration, and invasion. Activation of FLSs and secretion of pro-inflammation factors result in pannus formation and cartilage destruction. As an inhibitor of the cytokine, macrophage migration inhibitory factor (MIF), 4-Iodo-6-phenylpyrimidine (4-IPP) has been shown to reduce cell proliferation, migration, invasion, and the secretion of pro-inflammatory mediators in a variety of diseases. However, the usefulness of 4-IPP for RA treatment has not been assessed and was the purpose of this study. In vitro, 4-IPP was demonstrated to inhibit proliferation, migration, and invasion of RA FLSs, as well as the expression of pro-inflammatory cytokines. 4-IPP was also shown to inhibit MIF-induced phosphorylation of ERK, JNK, and p38, as well as reduce expression of COX2 and PGE2. In order to efficiently deliver 4-IPP to anatomical RA sites, we developed lactic-co-glycolic acid (PLGA) nanospheres, which not only protected 4-IPP from degradation but also controlled the release of 4-IPP. 4-IPP/PLGA nanospheres had potent anti-inflammatory activity and a high degree of biosafety. Results showed that local 4-IPP concentration was increased by nanosphere delivery, effectively reducing the inflammatory microenvironment as well as synovial inflammation, joint swelling, and cartilage destruction in a collagen-induced rheumatoid arthritis (CIA) rat model. Therefore, 4-IPP nanospheres are a sustained-release delivery system that may be an effective therapeutic strategy for RA treatment.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Rats , Animals , Quality of Life , Cell Movement , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Cytokines/metabolism , Fibroblasts , Cell Proliferation , Cells, Cultured , Synovial Membrane
SELECTION OF CITATIONS
SEARCH DETAIL
...